4 research outputs found

    Sonar image interpretation for sub-sea operations

    Get PDF
    Mine Counter-Measure (MCM) missions are conducted to neutralise underwater explosives. Automatic Target Recognition (ATR) assists operators by increasing the speed and accuracy of data review. ATR embedded on vehicles enables adaptive missions which increase the speed of data acquisition. This thesis addresses three challenges; the speed of data processing, robustness of ATR to environmental conditions and the large quantities of data required to train an algorithm. The main contribution of this thesis is a novel ATR algorithm. The algorithm uses features derived from the projection of 3D boxes to produce a set of 2D templates. The template responses are independent of grazing angle, range and target orientation. Integer skewed integral images, are derived to accelerate the calculation of the template responses. The algorithm is compared to the Haar cascade algorithm. For a single model of sonar and cylindrical targets the algorithm reduces the Probability of False Alarm (PFA) by 80% at a Probability of Detection (PD) of 85%. The algorithm is trained on target data from another model of sonar. The PD is only 6% lower even though no representative target data was used for training. The second major contribution is an adaptive ATR algorithm that uses local sea-floor characteristics to address the problem of ATR robustness with respect to the local environment. A dual-tree wavelet decomposition of the sea-floor and an Markov Random Field (MRF) based graph-cut algorithm is used to segment the terrain. A Neural Network (NN) is then trained to filter ATR results based on the local sea-floor context. It is shown, for the Haar Cascade algorithm, that the PFA can be reduced by 70% at a PD of 85%. Speed of data processing is addressed using novel pre-processing techniques. The standard three class MRF, for sonar image segmentation, is formulated using graph-cuts. Consequently, a 1.2 million pixel image is segmented in 1.2 seconds. Additionally, local estimation of class models is introduced to remove range dependent segmentation quality. Finally, an A* graph search is developed to remove the surface return, a line of saturated pixels often detected as false alarms by ATR. The A* search identifies the surface return in 199 of 220 images tested with a runtime of 2.1 seconds. The algorithm is robust to the presence of ripples and rocks

    Literaturverzeichnis

    No full text

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society

    Works Cited

    No full text
    corecore